
Finite Formulation of Surface Impedance Boundary Condition

Fabio Freschi1,2 Senior Member IEEE, Luca Giaccone1, Maurizio Repetto1,2, and Vincenzo Cirimele1

1Department of Energy - Politecnico di Torino, Italy, name.surname@polito.it
2The School of Information Technology and Electrical Engineering - The University of Queensland, Australia

In several electromagnetic applications field quantities are confined in layers which are thin with respect to other geometrical
dimensions. The numerical solution of these phenomena has led to the development of special formulations. Among these, the surface
impedance boundary conditions has been extensively developed in the past decades, often coupling it to other techniques for the
analysis of volumes like finite elements or boundary elements method. In this paper a finite formulation of the surface impedance
boundary condition is presented and its application to the analysis of induction heating problems is proposed. The novelty of the
paper lies in the definition of the operative quantities present in the formulation and in its development toward an iterative technique
which takes into account magnetic nonlinearity.
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I. INTRODUCTION

THE surface impedance boundary condition (SIBC) is a
technique which can be used to treat electromagnetic

phenomena in time-varying electromagnetics. Some very im-
portant papers have discussed its main aspects both from the
theoretical and from the implementation viewpoint, like in [1],
[2], [3]. The SIBC formulation can treat both thin layers of
eddy currents but can also be applied to the case of truly thin
conductors like in the case of magnetic and conductive shields
as shown in [4].

Induction heating is an application where the most important
phenomena are confined in a very thin surface layer. This is
mainly due to the frequency values used, in the kilohertz range,
and because most often workpieces are ferromagnetic. In the
past, part of the Authors of the present paper have developed
a particular formulation to take into account this peculiarity
by means of a one dimensional solution coupled to a three-
dimensional finite element analysis of the whole structure [5].
A first harmonic sinusoidal approach is used to approximate
nonlinear effects [6], [7]. The present work would make a
synthesis of this previous experience by introducing the use
of SIBC in the simulation of skin effect but keeping, at least
in an approximate way, the effect of magnetic nonlinearity.

II. BEM-SIBC HYBRID FORMULATION

The considered domain is made by a magnetic and conduc-
tive volume surrounded by a region where source conductors
with impressed currents are present. It is considered that the
external region is studied by means of a BEM technique
formulated in terms of reduced magnetic scalar potential. It
is also assumed that the volume is replaced by its boundary.

A. BEM formulation

By considering that the magnetic field is decomposed in two
parts ~H = −∇ψ+ ~HS where ~HS is the magnetic field created
by coils with imposed current sources, the reduced magnetic
scalar potential ψ can be computed by BEM equation on the
external surface of the meshed domain by assuming that:

• ψ is evaluated in the center point of faces;
• the term ∂ψ

∂n is uniform on each face,
the BEM equation [8], can be written in matrix form as:

Hψ + W
∂ψ

∂n
= 0 (1)

where:

(H)ij = δijα−
∫
Sj

∂G(~r, ~r′)

∂n
dS

(W)ij =

∫
Sj

G(~r, ~r′)dS

where α is the portion of solid angle seen by the point ~r, G is
the Green function, δij is the Kronecker function, H and W
are square matrices whose dimensions are (NF × NF ) being
NF the number of faces on the surface.

B. SIBC formulation

Sinusoidal varying quantities are considered so that complex
form can be used. Under these assumptions, phasor quantities
decay exponentially inside the material. The shell is discretised
by means of two surface grids connected by duality relation-
ship: configuration variables are associated to primal grid and
source variables to the dual one [9]. Even if these cells are
represented on the two-dimensional objects, it is considered
that each edge is the trace of a shell face Σ extending along
the depth up to the level where all fields are null. The global
variables associated to the geometrical dimensions are reported
in Table I. Due to the geometrical and field peculiarities, the
electromagnetic induction law on each of the faces on the shell
is given by:

Ce = −jωφ (2)

where C is a (NF × NE) matrix containing the incidence
of primal edges on faces, being NE the number of edges on
the surface and φ is the phasor of the magnetic flux incident
on the face. The Ampère’s law is applied on dual faces. By
considering the circulation equation on shell faces Σ, it can
be seen how this degenerates because only one of the edges
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Fig. 1: Problem discretisation, primal grid in blue and dual grid
in red. Variables: ψ on dual nodes, h on dual edges, ~J and i
on dual faces, e on primal edges.

TABLE I: Global variables and their associated domains

Global Variable Unit definition grid element

electro-motive force V e =
∫
L
~E · ~dL primal 2D edge

magnetic shell flux Wb ϕ =
∫
Σ
~B · ~dS primal shell face

incident magnetic flux Wb φ =
∫
S
~B · d ~dS primal 2D face

magnetic scalar pot. A ψ dual 2D node
magneto-motive force A h =

∫
L̃
~H · ~dL dual 2D edge

current A i =
∫
Σ̃
~J · ~dS dual shell face

is active. According to this assumption the electromagnetic
induction law becomes i = h. The behaviour of the field
quantities inside the shell can be obtained by their analytical
solutions under the assumption of quantities varying as:

J(y) = J0e−
(1+j)
δ y = J0e

− yδ e−j
y
δ (3)

where J0 is the current density on the surface of the material.
The electric field on the surface can be obtained by e on a
primal edge as E0 = e

λ where λ is the length of the primal
edge. By exploiting the constitutive relation J0 = σE0 the
constitutive relation between e and the corresponding i along
the dual face twined with the edge can be written as:

i =

∫
L̃

∫ +∞

0

J0e−
y
δ e−j

y
δ dydL = L̃

δ

1 + j
J0 =

σL̃δ

L(1 + j)
e

(4)
where L̃ is the breadth of the dual face. Equation (4) defines
the admittance related to each couple primal edge/dual face on
the shell. The relation can be inverted in order to obtain the
diagonal matrix Z.

C. Hybrid solution

The topological and constitutive equations on the shell are
assembled to solve the current flow problem using a technique
similar to the mesh analysis:

CZCT imesh = −jωφ (5)

where imesh is the array of fictitious currents associated to each
primal face. The coupling terms between the circuit equation
(5) and the BEM one (1) are the incident magnetic flux that is
related to the normal derivative of the reduced magnetic scalar
potential as:

φ = µ0A

(
−∂ψ
∂n

+ HSn

)
(6)

where A is the array of primal face areas, and by the Ampère’s
law applied on dual edges:

i = −G̃ψ + hS ⇒ i = −CTψ + hS (7)
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Fig. 2: Comparison of the power loss calculated using a 2d
axysimmetric code and BEM-IBC hybrid formulation.

where subscript S refer to the fields created by imposed current
source. The final assembled version of the equations become:[

H W

−CZCT jωµ0A

] [
ψ
∂ψ
∂n

]
=

[
0

−jωµ0AHSn −CZhS

]
The previous system of equations can be solved directly or
iteratively through the Schur complement technique [11].

The proposed technique has been applied to the study of a
ferromagnetic slab excited by a circular coil.The solution has
been compared with a 2D axisymmetric FEM one at different
frequency values ranging from 50 Hz to 10 kHz obtaining a
very good agreement on field and integral quantities (Fig. 2).
The extension of the proposed approach to nonlinear case and
to unstructured surface discretizations will be presented at the
Conference.
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